Project Dynamical Systems

6 April 2018

Exam Problem Sheet

The exam consists of 5 problems. You have 120 minutes to answer the questions. Give brief but precise answers. You can achieve 50 points in total which includes a bonus of 5 points.

1. [3+3+3 Points.]

For each of the following bifurcations, plot the bifurcation diagram, describe in words the bifurcation scenario, and give explicit examples of a time continuous system showing the respective bifurcation.

- (a) Saddle node bifurcation.
- (b) Transcritical bifurcation.
- (c) Pitchfork bifurcation.

2. [3+1+3+1 Points.]

Consider the differential equation $x' = x + \cos t$.

- (a) Find the general solution of this equation.
- (b) Prove that there is a unique periodic solution for this equation.
- (c) Compute the Poincaré map $p: t=0 \mapsto t=2\pi$ for this equation and use this to verify again that there is a unique periodic solution.
- (d) Use part (c) to determine the stability of the periodic solution from the Poincaré map.

3. [1+4+1+2+3 Points.]

The differential equation

$$x'' + bx' + kx = 0,$$

describes the motion of a particle (with mass m=1) on which a spring force is acting (a so called *harmonic oscillator*). The constants satisfy $b \ge 0$ (b is the friction constant) and k > 0 (k is the spring constant).

(a) Show that the differential equation is equivalent to the planar system

$$X' = \left(\begin{array}{cc} 0 & 1 \\ -k & -b \end{array}\right) X.$$

(b) Identify the regions in the relevant portion of the b-k plane where the system above has similar phase portraits. In each case sketch the phase portrait and describe the motions in words.

- please turn over -

- (c) Show from the eigenvalues that for b > 0, the equilibrium at the origin is asymptotically stable.
- (d) Show that $L(x,y) = \frac{1}{2}y^2 + \frac{1}{2}kx^2$ is a Lyapunov function for the system.
- (e) State Lasalle's Invariance Principle.
- (f) Use Lasalle's Invariance Principle to prove again that the equilibrium at the origin is asymptotically stable for b>0 and that in this case the basin of attraction is the full plane. (Hint: consider disks of arbitrary radius centered at the origin.)

4. [8 Points.]

Consider the family of one-dimensional systems x' = f(x, a) with parameter $a \in \mathbb{R}$. Suppose that for $x_0, a_0 \in \mathbb{R}$,

- (i) $f(x_0, a_0) = 0$,
- (ii) $\frac{\partial f}{\partial x}(x_0, a_0) = 0$,
- (iii) $\frac{\partial^2 f}{\partial x^2}(x_0, a_0) \neq 0$, and
- (iv) $\frac{\partial f}{\partial a}(x_0, a_0) \neq 0$.

Show that the system has a saddle-node bifurcation at (x_0, a_0) .

5. [3+6 Points.]

- (a) State the precise definition of chaos for a discrete time system $x_{n+1} = f(x_n)$, $n \in \mathbb{Z}_{\geq 0}$, given by a map $f: I \to I$ where I is a compact interval in \mathbb{R} .
- (b) Argue that the doubling map

$$f:[0,1] \rightarrow [0,1], \quad x \mapsto 2x \mod 1$$

is chaotic.

Robert 1. mol